A characterization of uniserial rings via continuous and discrete modules
نویسندگان
چکیده
منابع مشابه
ω1-generated uniserial modules over chain rings
The purpose of this paper is to provide a criterion of an occurrence of uncountably generated uniserial modules over chain rings. As we show it suffices to investigate two extreme cases, nearly simple chain rings, i.e. chain rings containing only three twosided ideals, and chain rings with “many” two-sided ideals. We prove that there exists an ω1-generated uniserial module over every non-artini...
متن کاملSOME REMARKS ON ALMOST UNISERIAL RINGS AND MODULES
In this paper we study almost uniserial rings and modules. An R−module M is called almost uniserial if any two nonisomorphic submodules are linearly ordered by inclusion. A ring R is an almost left uniserial ring if R_R is almost uniserial. We give some necessary and sufficient condition for an Artinian ring to be almost left uniserial.
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولAlmost uniserial modules
An R-module M is called Almost uniserial module, if any two non-isomorphic submodules of M are linearly ordered by inclusion. In this paper, we investigate some properties of Almost uniserial modules. We show that every finitely generated Almost uniserial module over a Noetherian ring, is torsion or torsionfree. Also the construction of a torsion Almost uniserial modules whose first nonzero Fit...
متن کاملExplicitly Non-Standard Uniserial Modules
A new construction is given of non-standard uniserial modules over certain valuation domains; the construction resembles that of a special Aronszajn tree in set theory. A consequence is the proof of a sufficient condition for the existence of non-standard uniserial modules; this is a theorem of ZFC which complements an earlier independence result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
سال: 1991
ISSN: 0263-6115
DOI: 10.1017/s1446788700032687